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Abstract—Reissner’s theory for the bending of anisotropic. homogeneous plates and plane stress
theory are used to construct improved three-dimensional displacement and stress fields. Under
specific “regular™ boundary conditions on the edge surface, these fields differ from the exact elasticity
solutions by terms of the order of the plate thickness cubed.

I. INTRODUCTION

Being two-dimensional as they are plate theories provide only approximations to the
solutions of three-dimensional elasticity. An efficient method for evaluating the error
involved in a global, mean square sense rests on the hypersphere theorem of Prager and
Synge (1947). see Synge (1957). The theorem assumes the knowledge of statically and
kinematically admissible solutions and bounds the error in terms of their difference.
Nordgren (1971) applied this method to Kirchhoff's classical plate theory finding a relative
error proportional to the plate thickness, O(#). Simmonds (1971) and Nordgren (1972)
were able to reduce the error to O(h#%) by constructing a displacement field incorporating
transverse shear deformation. Corresponding O(h) and O(h®) error bounds for classical
shell theory were obtained by Koiter (1970), Danielson (1971) and Ladevéze (1976).

Nordgren's analysis of Reissner's (1945) plate theory resulted in an O(4?) error
estimate, implying that this higher-order theory offers no essential improvement over the
classical theory. Berdichevskii (1973) found that in the absence of surface distributed loads
Reissner's theory may bear a smaller error O(#%). An improved error bound for Reissner's
theory as applied to anisotropic plates with high transverse sheur deformability was arrived
at (Rychter, 1986). In the latter two estimates self-equilibrating surface parallel stresses
were found essential, their importance being recognized in a different context by Reissner
himself (1975, 1985) and by Rehficld and Valisetty (1984).

This report aims at extending the validity of O(#°) error estimates in Reissner’s theory
to general homogeneous, anisotropic plates with midsurface elastic symmetry, carrying
arbitrarily distributed face lateral loading. This necessitates in the first place that full
Reissner’s theory be used with the effect of transverse normal stress explicitly included in
the moment constitutive equations, as opposed to Nordgren (1972), Berdichevskii (1973)
and Rychter (1986). Secondly, at this level of accuracy stretching of the plate resulting from
Poisson’s effect cannot be ignored, so that Reissner’s sixth-order bending field equations
must be considered along with fourth-order equations responsible for stretching. From
these two sets of two-dimensional equations improved three-dimensional displacement and
stress fields are constructed the relative mean square errors of which with respect to
the exact solutions are of O(#°). This is achieved by taking the in-plane and transverse
displacement components as third- and fourth-degree polynomials in the thickness coor-
dinate.

Like carlier works employing the hypersphere theorem the improved error estimate is
by necessity restricted to “regular™, in Koiter’s (1970) terminology, boundary conditions
on the cylindrical edge surface. They demand that the edge data should be distributed
in conformity with the constructed three-dimensional displacement and stress fields, a
requirement hardly ever met in practice. The effect of irregular boundary conditions along
the lines of Koiter (1970) is discussed below.
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2. FORMULATION OF THE PROBLEM

Plates of constant thickness 24 are studied. subjected to distributed transverse loading
p(x,) applied to the upper face x; = h where x, (x = 1.2) and x; are in-plane Cartesian
coordinates and distance from the middle plane x; = 0. The true state of stress and dis-
placement in the plate will be approximated by means of statically admissible stresses &,
kinematically admissible stresses ¢ and kinematically admissible displacements a.

By definition, the statically admissible stresses ¢ must conform to the traction boundary
conditions at the faces

6,3(.‘.‘1{..‘_] = ih) = 0 (l)
633(.“‘{,.\'} = ’—h) = 0 (2)
G33(xp. x5 = h) = p(xy) (3)

and should fulfil the equilibrium equations, with no body forces
Gaypp+0:=0 4
Gu3at+ i3 =0 (3

the commas denoting partial differentiation with respect to x, and x, and repeated indices
implying summation over the range 1, 2.

The kinematically admissible fields 4 and 6 are required to satisfy constitutive equations
of the form

G = Dy iy + 11 :) + Copf yy (6)
G,y = B3ty s 41i3,) (7
Gyy = 1Byt + iy, ) + Byasytia g 8)
where
Dz/!b] = Bzuxq - 31/1333334",/[33333 %)
Cup = Byy3s/Bisss. (10)

Here the material has been taken to be homogencous, linearly elastic and anisotropic with
midplane elastic symmetry. The B are the components of the elasticity tensor, D, and C,y
being introduced for notational convenience.

It is well known that by minimizing the distance 6 —d between the statically and
kinematically admissible solutions one approaches the exact solution. One intends to show
that starting from Reissner’s theory in conjunction with plane stress theory fields ¢ and
can be found such that 6 — ¢ is of O(h*) relative to 4.

3. TWO-DIMENSIONAL PLATE THEORY

The kinematic variables of Reissner’s theory include an average lateral displacement
w and rotations b,, defined as
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3. .
wixy) = -‘Vrj- \ ty(xg. X3) (1 —x3/h°) dx,

L

3 "
b:(xﬁ} = _273_5,[—}' ux(xﬁ’x})-tl d.Y3.
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(n

(12)

The corresponding static variables are moments M,z and transverse shear forces Q,

h

st(x,i) = -[ 5,3(.V,Q,X3).\'3 dx_‘
k

4
o,(x) = J G,3(x;. x;) ds.

The equilibrium equations in terms of A/, and Q, are
Myp=0un Qux=-p
and the constitutive equations have the form
My = ,llk‘Dxﬂiq(}}AJ: +h,)+ .'fo:cx/;[’
Q. = B nlby+ w ).
The accompanying boundary conditions prescribe
Mgngorb, and Q@ orw on C

where Cis the edge of the plate with unit normal »,.

(13)

(14)

(15.16)

(17)

(18)

(19)

At the level of accuracy one wishes to achieve it is necessary to introduce variables
corresponding to plate stretching in addition to those of bending. These encompass in-

planc average displacements r,, defined as

| I .
l,‘,(.\*,,) = ,,"/; u,(x,,, X';) dx;

< h

and in-plane stress resultants N,y

h
Ny(x) = f . G x3) doy.

The associated equilibrium equations are
N,‘glﬂ = 0
and the constitutive equations rcad

N’l’ = ;ID,,H,, (l’g_,, -+ Cu.i) + Ileﬂ[}.

(20)

an

(23)

The boundary conditions to be used in conjunction with these equations require the speci-

fication of
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Nyn, or v, on C. (24)

The sixth-order bending problem. eqns (15)-(19), and the fourth-order stretching
problem. eqns (22)—(24). are not coupled. For compactness they have been recorded as
given a priori two-dimensional equations but in reality they can be derived by constructing
close to each other three-dimensional fields & and 6. The derivation is detailed in the next
section,

4. THREE-DIMENSIONAL FIELDS

[t will be shown that the requirements are met by the following kinematically admissible
displacement field u:

i, = o+ chb, + (27 = Dk, + (2 = i) £, 25)
iy = whzs+ 55 = Dg+ 3 =)+ 4 (51 =622+ 3)r
— (=67 =8z 4+ ¥)p/16B,y,,  (26)

where = = Xy &, fo. 5, 9. Land rare functions of the surface coordinates x, given in terms
of the basic kinematic variables ¢,, w and b, as

N

h -
§= - C:u(l'x_/!'*‘l'n’x)- g=— 4 Cx/:(”z./l‘*‘h/:_,) (27)
h h ) .
= — Z'C:II(kx,I!+k[J‘1)! r= - jczll(fx./!+jt!,x) (28)
h . h Sh
/\', = — 2’.\’_,, /, = - 6g,— Tj (/),-}-ll",). (29)

Introducing eqns (25) and (26) into the constitutive equations, eqns (6)-(8), and using
eqns (18) and (27) -(29) yields the corresponding kinematically admissible stress ficld &
(ixli = gD:/i}.q [l'i..ry + l’ry,i. +:/I(hi.q + hq.i) + (:2 - {) (k/'..r] +kr[.),)

+ (:‘ - g:) (//q +/q,4)] + 5(2 + 3: —:})Cx/fl) (30)
. 3 ) Lens | a7 s
G,y = 47'“ =)@+ Byyiz[10(527 =627+ 38)r, + 3 (=7 —2)1 ]

— (=627 =82+ 33) (B,3:3/16B5335)0p ;. (31)
Gy = 32+3:-2%p. 32)
The statically admissible stress field 6 needed is

. l 3:
G = 5}; N,”+ 27;5 A’[,ﬂ’*’ 21()(3:—5:‘)C,"[7

+ éDx/li.q[(:: - ll) (ki.n +kry.).) + (:J - -::) (./;n+./:y;)] (33)
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L 3 . h .
O = Il;“ -27)Q,— 6(-" =)D i (K g+ Ky ip)

h , . .
~ 20 (5:4 —6z"+1) [Dxa,:,, (fomg+ Srin)— %Cxui’.ﬁ] 34

=12+3:--" )I’+ (~ -2+ DD, yin(Kinpe +Kyipe)

1? !
+ % (-'5 =227 +:3) [Dx[h'.ry (f;..,m, +ﬁy.wx) - %Czﬂp,ﬂzl (35)

From eqns (30)-(35) with eqns (17) and (23) the difference 6 —¢6 is found to have the
components

&xll—'éxﬂ =0 (36)
. . h oy . . oot _ .
0,3 —0;3 = —6(- =)D i Kigp Ry — 327 =2 B, 3ixd 5

4()(5- - -.‘+|)[DIUA'](/ﬂl’)‘+/']I/‘) 1[![’/‘]

— (52 =62+ DB+ (P =628+ “’)(31141/163;\‘1”'[’4 (37)
R A
Oy —0n = 74(: .’-_ + I)D‘x/hﬁy(,\A nfiz +,‘r] A/A’:)

4() (- 7-' + ) [DxﬁAq(./A nflx +/r, A/h) - xl‘p /h] (38)

It is evident that the three dimensional fields 4, ¢ and & are coanstructed from the two-
dimensional variables ¢,. w, b, N,p, M, and Q, of the plate theory introduced in Section
3. in par\icular, @ and ¢ reduce to identities relations (11)-(14), (20) and (21) defining
those variables. The ficlds @ and ¢ arc interrelated through the constitutive equations, eqns
(6)-(8), and are, therefore, kinematically admissible. The ficld é satisfies traction boundary
conditions (1) ~(3) at the faces and with eqns (15) and (16) is seen to meet the equilibrium
equations, eqns (4) and (5), thus being statically admissible. Finally, ¢ is very close to ¢
but this will be shown later.

The individual components of @, ¢ and & are derived along with the two-dimensional
plate theory equations of Section 3 as follows. First, a guess is made as to the form of the
displucement a distribution, guided by previous work on the subject of refined plate theories,
notably the one due to Rehfield and Valisetty (1984). The assumed field in eqns (25) and
(26) accordingly incorporates the cffects of both bending and stretching, yiclds non-zero
transverse shear and normal strains, produces non-lincarly distributed surface parallel
strains, and by eqns (27) and (28) gives via the constitutive equation, eqn (8), the normal
stress d 4y inegqn (32). this well-known distribution being in agreement with traction bound-
ary conditions (2) and (3) on the faces. Also, the form of i conforms to definitions (11),
(12) and (20) of w, b, and r, which quantitics are chosen to be the basic kinematic variables
of two-dimensional plate theory.

Introducing cqns (25), (26) and (32) into the constitutive equation, eqn (6), gives 6,
in eqn (30). Since, in general, ¢ is required to be close to 4, one takes 6,4 = d,; so that eqn
(36) holds. Now substituting ,, from cqn (30) into eqns (13) and (21) yields aftcrintegration
over the thickness the constitutive equations, eqns (17) and (23). for thc moments M, und
forces N,;. These expressions, in turn, make it possible to rewrite 4,, as in eqn (33).

Having eqn (33). the equilibrium equation. eqn (4), may be integrated with respect to
X in conjunction with traction boundary conditions (1) to find a distribution of d,;. This
meets conditions (1) when the in-plane equations of equilibrium (22) are imposed.
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Introducing &, into eqn (14) gives. in addition, the moment equilibrium equation. eqn
(13). with which d,; finally assumes the form of eqn (34).

Inserting eqn (34) into egn (5). one may integrate this fatter equilibrium equation with
respect to x; subject to boundury conditions (2) and (3) at the fuces in order to get a
distribution of ;.. This distribution will meet boundary condition (3) provided that the
transverse force equilibrium equation. eqn (16). holds. and with egqn (16) ., may be
expressed uas in eqn (35).

Lastly. in order to find d,,. expressions (25) and (26) are substituted into the consti-
tutive equation. eqn (7). Since d,, ought to be close to 6,; in eqn (34), relations (29) are
adopted for &, and f; along with the constitutive equation. eqn (18). for the shear forces
Q,. so that d,, in eqn (31) results, and the derivation is complete.

Preparatory to error analysis, it is expedient to have ¢ and & — ¢ expressed through the
displacements ¢, and rotations b, only. Using eqn (18) and the relation

48 A =0, 39)

where A, is the inverse of 8,,,; and J,; stands for the Kronecker delta, f, in eqn (29),
can be brought into the form

. h
jz = - (;57.2”’4"11‘0')' (40)
From eqns (13) -(17) it follows that
Q.= ‘;}1‘[),!,,»"(})“”‘+b,“;§)+()(}15) 4
,’ = - l"’, ' [)1/“1,(1’4‘"]17( + hu,/‘.llz) + ()(h‘) (42)

Now from egns (27); and (28), and (40} (42) thosc variables entering ¢ and 6 ~ ¢ that are
expressible through rotations b, have the following estimates

fo=0Y, r=0ur), p=0U", @, =0 43)
wherein for the present purpose only h-dependence huas been explicitly exposed. Similarly,
these contributions to ¢ and @ -4 which are functions of the in-plane displucements ¢,, by
eqns (27),, (28), and (29), may be cstimated as

k, = 0OW*). =0 (44)
Use of cyns (43) and (44) in eqns (30) -(32) and (36)-(38) leads to the conclusion that

6—d = O(h'd) (45)

where 6 —~d and @ are understood to be represented by their largest components &,;, —d,;
and 6. respectively, and expressed in terms of ¢, and b,.

5. MEAN SQUARE ERROR ESTIMATE

The stresses ¢ and @ can be regarded as clements of function space endowed with the
norm

h
H&H = f J {Axﬁén(}:ﬂ&én '{"4'413[1}5:36'153 + 26“:,’{}3(;13533 -+ f" 333}(;33533} dF dl’}
g R

(36)
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where F is the midplane region and A denotes elements inverse to the components of the
elasticity tensor B. Obviously, the above energy functional is assumed positive definite to
serve as a norm.

If ¢, ¢ and ¢ represent the exact, statically and kinematically admissible stress fields of
a given problem in elasticity. the hypersphere theorem due to Prager and Synge (1947)
asserts that

lo— i(6+a)

Hdll =e (47)
where
e = ilg—adl/ld|. (48)

This implies that ¢ may be approximated by (é+4)/2. the corresponding relative mean
square error ¢ being computable from eqn (48). The error decreases with ¢ —d and it was
for this reason that one aimed to minimize ¢ — 4.

The local estimate, eqn (45), will preserve its character in terms of /# when the stresses
é —d and ¢ are replaced by their norms calculated from eqn (46). Thus it follows from egns
(45) and (48) that

e=0W'L" (49)

where L is a characteristic mean square wavelength of the midplane deformation pattern,
introduced to cnsure that ¢ is a dimensionless quantity. Practically L is calculable knowing
the in-plane displacements ¢, and rotations b, from the two-dimensional plate theory. For
brevity, one dispenses with recording L explicitly.

The crror estimate in eqn (49) signifies that the two-dimensional Reissner theory
combined with plane stress theory is capable of providing the three-dimensional stress ticld
(6 +d)/2 which differs from the exact clasticity solution ¢ by terms of relative O(4Y).
This improves Nordgren's (1972) estimate involving an crror of O(/°) and gencralizes
Berdichevskii’s (1973) /' estimate restricted to plates with load-free faces.

6. EFFECT OF EDGE CONDITIONS

Like its predecessors the improved crror estimate, eqn (49), is not universally valid for
arbitrarily prescribed edge conditions on the cylindrical bounding surfuce, simply because
one constructed & and d paying no attention to those conditions. The artificial edge data
conforming to ficlds ¢ and d in eqns (25), (26) and (33)-(35) arc termed “regular™, see
Koiter (1970). Practically, one is sure to be confronted with irregular situations on the edge
and their effect must be taken into account.

Suppose that the edge tractions are irregular, so that the sum 6 +6* must be used
instead of ¢ alone to satisfy the true conditions, ¢* being the corresponding edge-zone
correction. Replacing in eqn (48) ¢ by 6+ a* and using the triangle inequality, onc finds
that the error is now bounded by e+e¢*, ¢ having its previous meaning, cqn (48). and
estimate (49), and ¢* denoting a supplement of the form 2¢* = |la*|/||é]]. As Koiter (1970)
points out, ¢ extends over a distance of O(L) from the edge. while o* may be restricted to
a narrow zonc of width & ncar the boundary. Accordingly, from eqn (46), ¢* can be
evaluated

¢* = O(h/L)" *|a*|/|d| (50

where |a*| and |d] arc the absolute maximum values of ¢* and 6. Clearly, the order of the
term |a*|/|d| will depend on the concrete form of the boundary conditions. Consider, as an
example. the free edge. The exact requirement that ¢ n = 0, n being the unit normal to the
edge. is violated by the interior stress field ¢ in eqns (33) and (34) because of the 4,. /, and
p terms. In view of eqns (43) and (44), the edge correction ¢* corresponding to those terms



S44 Z. RYCHTER

will be of O(h°) relative to 6 and the error ¢* from irregular edge data will become by eqn
(50) proportional to 4* . a slightly greater value than that in eqn (49) for regular conditions.

[t should be emphasized that our estimates of ¢ and ¢* are global (based on integral
norm (46)) and as such do not guarantee local closeness of our statically and kinematically
admissible solutions to the exact three-dimensional elasticity solutions. especially near the
edges of the plate. The lurgest local error is to be expected when the exact solution involves
stress singularities, as happens in plates with clamped edges.

7. CONCLUDING REMARKS

This paper proves that Reissner’s bending theory combined with the plane stress theory
is capable of predicting the three-dimensional behavior of homogencous elastic plates within
a relative mean square error of O(#') compared with elasticity solutions for arbitrarily
distributed surface lateral loading. provided that there are regular boundary conditions on
the edge. In contrast to known results in the literature, this refined error estimate cor-
responds to Reissner’s theory in its general form which incorporates the transverse normal
stress etfect in constitutive equations.
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